Rev.A

SUM-760SxxxMGR

760W Programmable Driver with INV Digital Dimming

Features

- Panel Mount Connectors Facilitates Installation
- Rotary Switch+RJ12 Connector
- Hot-plugging Protection
- Parallel LED Protection
- Ultra High Efficiency (Up to 95.5%)
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- INV Digital Dimming, UART Based Communication Protocol
- Dim-to-Off with Standby Power $\leq 0.5W$
- Minimum Dimming Level with 5% or 10% Selectable
- Maximum Dimming Level with 9V or 10V Selectable
- Fade Time Adjustable
- Low Inrush Current
- Output Lumen Compensation
- End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66 and UL Dry/Damp/Wet Location
- 5 Years Warranty

Description

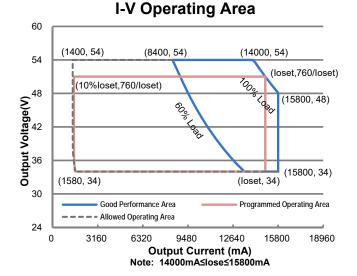
ESSESSION FC CECB

The *SUM-760SxxxMGR* series is a 760W, constant-current, programmable and IP66 rated LED driver that operates from 90-305Vac input with excellent power factor. Created for many lighting applications including high mast, sports, UV-LED, aquaculture and horticulture, etc. It provides rotary switch, RJ12 connector and dim-to-off functionality. The dimming control supports 0-10V dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.

Models

A	Carpar	Full-Power Current	Default Output	Input Voltage	Output Voltage	Max Typical Output Efficiency		Typical Power Factor		Model Number
	Current Range	Range(1)	Current	Range(2)	Range	Power		120Vac	220Vac	
	1.4-15.8A	14-15.8A	14 A	90~305Vac 127~300Vdc		760W	95.5%	0.99	0.96	SUM-760S15AMGR ⁽⁴⁾

Notes: (1) Output current range with constant power at 760W.


(2) Certified input voltage range: UL, FCC, CB 100-277Vac; otherwise: 100-240Vac

(3) Measured at 100% load and 220Vac input (see below "General Specifications" for details).

(4) SELV output

Rev.A

Input Specifications

Parameter	Min.	Тур.	Max.	Notes
Input AC Voltage	90 Vac	-	305 Vac	
Input DC Voltage	127 Vdc	-	300 Vdc	
Input Frequency	47 Hz	-	63 Hz	
Lookogo Current	-	-	0.75 MIU	UL 8750; 277Vac/ 60Hz
Leakage Current			0.70 mA	IEC 60598-1; 240Vac/ 60Hz
	-	-	7.54 A	Measured at 100% load and 120 Vac input.
Input AC Current	-	-	4.05 A	Measured at 100% load and 220 Vac input.
Inrush Current(I ² t)	-	-	1.87 A ² s	At 220Vac input, 25℃ cold start, duration=13.7 ms, 10%lpk-10%lpk. See Inrush Current Waveform for the details.
PF	0.90	-	-	At 100-277Vac, 50-60Hz,60%-100%Load
THD	-	-	20%	(456- 760W)
THD	-	-	10%	At 220-240Vac, 50-60Hz,75%-100%Load (570- 760W)

Output Specifications

Parameter	Min.	Тур.	Max.	Notes
Output Current Tolerance	-5%loset	-	5%loset	100% load
Output Current Setting(loset Range)				
SUM-760S15AMGR	1400 mA	-	15800 mA	
Output Current Setting Range with Constant Power				
SUM-760S15AMGR	14000 mA	-	15800 mA	
Total Output Current Ripple (pk-pk)	-	5%lomax	10%Iomax	100% load, 20 MHz BW
Output Current Ripple at < 200 Hz (pk-pk)	-	-	2%Iomax	70%-100% load

Specifications are subject to changes without notice.

2 / 16

SUM-760SxxxMGR

Rev.A

Output Specifications (Continued)

Parameter	Min.	Тур.	Max.	Notes
Startup Overshoot Current	-	-	10%lomax	100% load
No Load Output Voltage SUM-760S15AMGR	-	-	60 V	
Line Regulation	-	-	$\pm 0.5\%$	100% load
Load Regulation	-	-	±3.0%	
Turn-on Delay Time	-	-	0.5 s	Measured at 120-277Vac input, 60%- 100% Load
Temperature Coefficient of loset	-	0.03%/°C	-	Case temperature = 0°C ~Tc max

General Specifications

Parameter	Min.	Тур.	Max.	Notes
Efficiency at 120 Vac input:				Measured at 100% load and steady-state
SUM-760S15AMGR				temperature in 25°C ambient;
lo= 14000 mA	91.5%	93.5%	-	(Efficiency will be about 2.0% lower if
lo= 15800 mA	91.0%	93.0%	-	measured immediately after startup.)
Efficiency at 220 Vac input: SUM-760S15AMGR				Measured at 100% load and steady-state temperature in 25°C ambient;
lo= 14000 mA	93.5%	95.5%	-	(Efficiency will be about 2.0% lower if
lo= 15800 mA	93.0%	95.0%	-	measured immediately after startup.)
Efficiency at 277 Vac input: SUM-760S15AMGR				Measured at 100% load and steady-state temperature in 25°C ambient;
lo= 14000 mA	93.5%	95.5%	-	(Efficiency will be about 2.0% lower if
lo= 15800 mA	93.5%	95.5%	-	measured immediately after startup.)
Standby Power	-	-	0.5 W	Measured at 230Vac/50Hz; Dimming off
MTBF	-	201,000 Hours	-	Measured at 220Vac input, 80%Load and 25°C ambient temperature (MIL-HDBK-217F)
Lifetime	-	102,000 Hours	-	Measured at 220Vac input, 80%Load and 70°C case temperature; See lifetime vs. Tc curve for the details
	-	81,000 Hours	-	Measured at 220Vac input, 100%Load and 40°C ambient temperature
Operating Case Temperature for Safety Tc_s	-40°C	-	+90°C	
Operating Case Temperature for Warranty Tc_w	-40°C	-	+80°C	Case temperature for 5 years warranty Humidity: 10%RH to 95%RH
Storage Temperature	-40°C	-	+85°C	Humidity: 5%RH to 95%RH
Dimensions Inches (L × W × H) Millimeters (L × W × H)	15.35 × 4.25 × 1.91 390 × 108 × 48.5			With mounting ear 16.34 × 4.25 × 1.91 415 × 108 × 48.5
Net Weight	-	3500 g	-	

SUM-760SxxxMGR

Rev.A

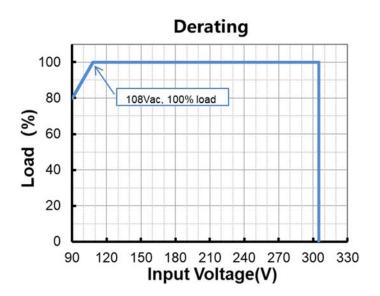
Dimming Specifications

F	Parameter		Тур.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin		-20 V	-	20 V	
Source Curre	nt on Vdim (+)Pin	90 uA	100 uA	110 uA	Vdim(+) = 0 V
Dimming Output Range with	SUM-760S15AMGR	10%loset	-	loset	14000 mA \leq loset \leq 15800 mA
10%-100% (Default)	SUM-760S15AMGR	1400 mA	-	loset	1400 mA \leq loset $<$ 14000 mA
Dimming Output	SUM-760S15AMGR	5%loset	-	loset	14000 mA \leq loset \leq 15800 mA
Range with 5%-100% (Settable)	SUM-760S15AMGR	700 mA	-	loset	1400 mA \leq loset $<$ 14000 mA
Recommende Range	ed Dimming Input	0 V	-	10 V	
Dim off Volta	ge	0.35 V	0.5 V	0.65 V	Default 0-10V dimming mode.
Dim on Volta	ge	0.55 V	0.7 V	0.85 V	Delaut 0-10V dimining mode.
Hysteresis		-	0.2 V	-	
PWM_in High	n Level	3 V	-	10 V	
PWM_in Low	Level	-0.3 V	-	0.6 V	
PWM_in Free	quency Range	200 Hz	-	3 KHz	
PWM_in Duty	/ Cycle	1%	-	99%	
PWM Dimmir	ng off (Positive Logic)	3%	5%	8%	Dimming mode set to PWM in Inventronics Programing Software.
PWM Dimming on (Positive Logic)		5%	7%	10%	
PWM Dimming off (Negative Logic)		92%	95%	97%	
PWM Dimmir	ng on (Negative Logic)	90%	93%	95%	
Hysteresis		-	2%	-	

Safety & EMC Compliance

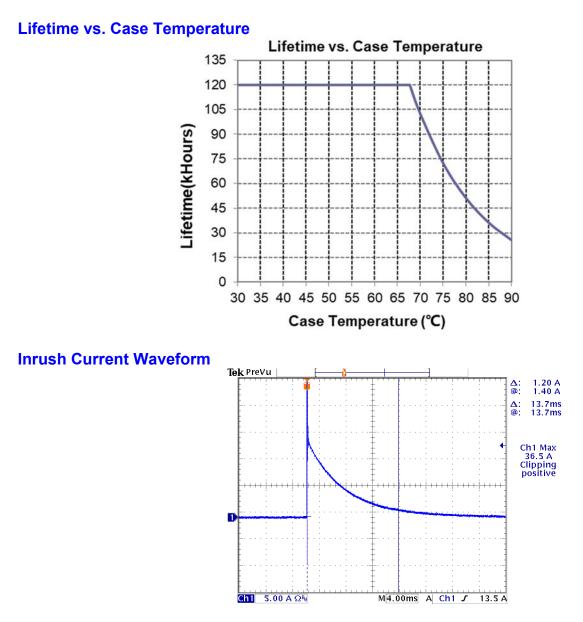
Safety Category	Standard				
UL/CUL	UL 8750,CAN/CSA-C22.2 No. 250.13				
CE	EN 61347-1, EN 61347-2-13				
СВ	IEC 61347-1, IEC 61347-2-13				
EMI Standards	Notes				
EN 55015 ⁽¹⁾	Conducted emission Test &Radiated emission Test				
EN 61000-3-2	Harmonic current emissions				

SUM-760SxxxMGR

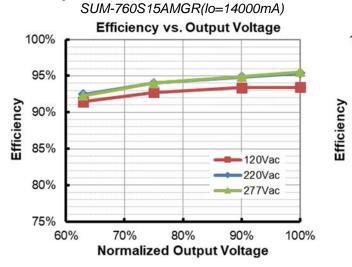

Rev.A

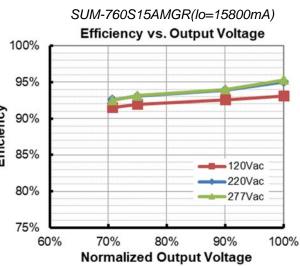
Safety & EMC Compliance (Continued)

EMI Standards	Notes
EN 61000-3-3	Voltage fluctuations & flicker
	ANSI C63.4 Class B
FCC Part 15 ⁽¹⁾	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, and [2] this device must accept any interference received, including interference that may cause undesired Operation.
EMS Standards	Notes
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips
EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment


Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

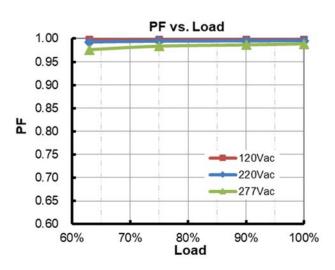
Derating



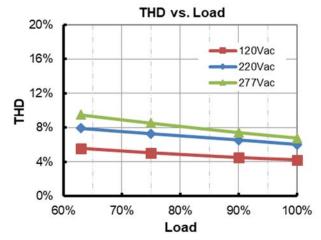

Rev.A

SUM-760SxxxMGR

Efficiency vs. Load

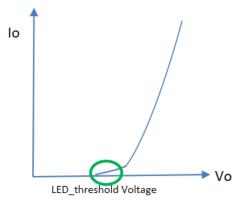

760W Programmable Driver with INV Digital Dimming

Specifications are subject to changes without notice.



Rev.A

Power Factor



Total Harmonic Distortion

Hot-plugging Protection

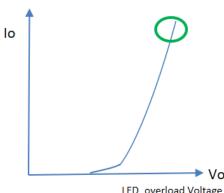
This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing Software.

LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases.

Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf.

Please test, program, and tune this feature for each LED load design.

SUM-760SxxxMGR


Rev.A

Hot-plugging Protection (Continued)

Parameter		Min.	Тур.	Max.	Notes
Hot-plugging	LED Threshold Voltage Setting Range	44 V	-	54 V	Set Vth close to, but higher than the actual LED threshold voltage
Protection	Setting Tolerance	-2%	-	2%	

Parallel LED Protection

This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing Software.

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf.

Please test, program, and tune this feature for each LED load design.

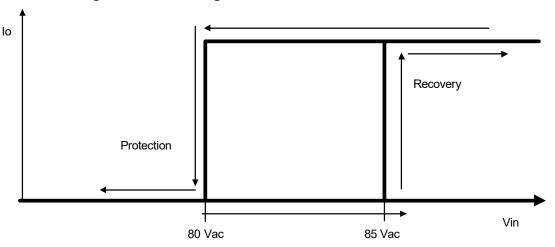
		•••
LED_	overload Volt	age

Parameter		Min.	Тур.	Max.	Notes
Parallel LED	Overload Voltage Setting Range	47 V	-	56 V	Set V_overload close to, but higher than the maximum LED forward voltage
Protection	Setting Tolerance	-2%	-	2%	

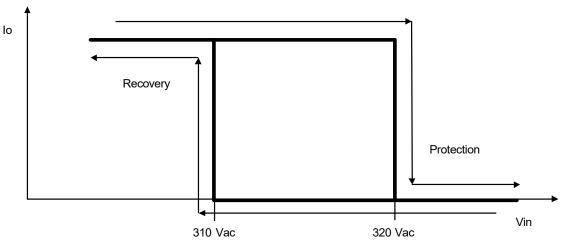
Protection Functions

Parameter		Min.	Тур.	Max.	Notes		
Over Tempera	ture Protection	Decreases o	output current,	returning to n	ormal after over temperature is removed.		
Short Circuit Pr	rotection		Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.				
Over Voltage F	Protection	Limits outpu	t voltage at no	load and in c	ase the normal voltage limit fails.		
Input Under Voltage	Input Protection Voltage	70 Vac	80 Vac	90 Vac	Turn off the output when the input voltage falls below protection voltage.		
Protection (IUVP)	Input Recovery Voltage	75 Vac	85 Vac	95 Vac	Auto Recovery. The driver will restart when the input voltage exceeds recovery voltage.		
Input Over	Input Over Voltage Recovery	310 Vac	320 Vac	330 Vac	Auto Recovery. The driver will restart when the input voltage falls below recovery voltage.		
Voltage Protection (IOVP)	Input Over Voltage Recovery	300 Vac	310 Vac	320 Vac	Auto Recovery. The driver will restart when the input voltage falls below recovery voltage.		
	Max. of Input Over Voltage	-	-	350 Vac	The driver can survive for 8 hours with a stable input voltage stress of 350Vac.		

Note: When removing the protective cap of RJ12, the waterproof protection performance should be evaluated together with external connected system by users.

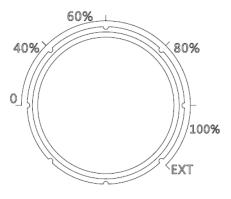

Specifications are subject to changes without notice.

Rev.A


760W Programmable Driver with INV Digital Dimming

Input Under Voltage Protection Diagram

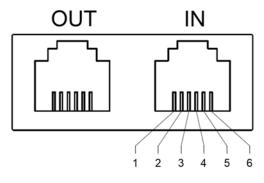
SUM-760SxxxMGR



Input Over Voltage Protection Diagram

• Rotary Switch and RJ12 Connector

Output current can be set as 0, 40%, 60%, 80%, 100% level by rotary switch and the output current can be dimmed by dimming wire in RJ12 connector when rotary switch is at 'EXT' position. The default mode is in 'EXT'.

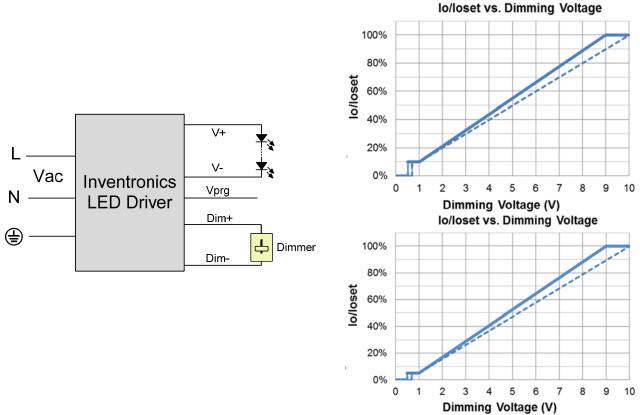


Rotary Switch

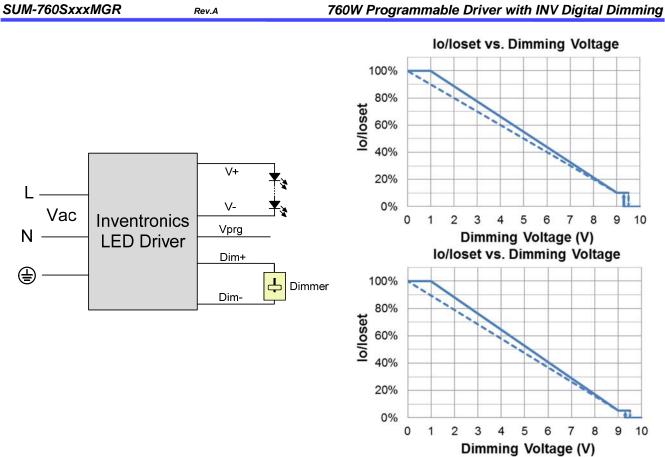
SUM-760SxxxMGR

Rev.A

760W Programmable Driver with INV Digital Dimming


Pin	Function	
1,6	Vprg	
2,5	Dim+	
3,4	Dim-	

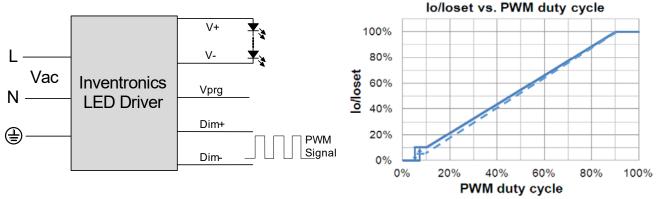
RJ12 Connector


Dimming

• 0-10V Dimming

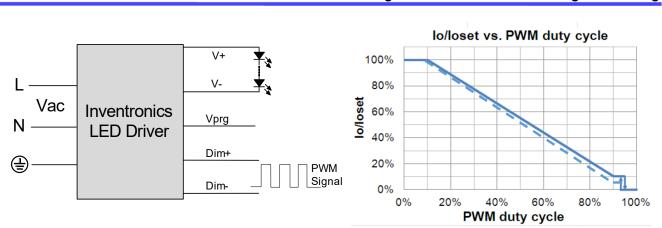
The recommended implementation of the dimming control is provided below.

Implementation 1: Positive logic


Implementation 2: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When 0-10V negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.


PWM Dimming

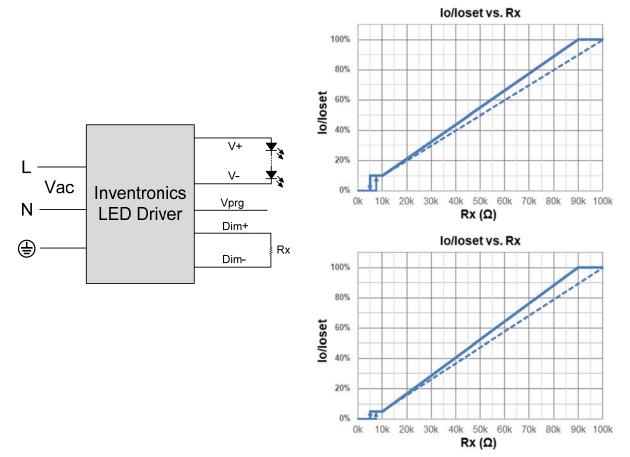
The recommended implementation of the dimming control is provided below.

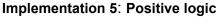
Implementation 3: Positive logic

Rev.A

760W Programmable Driver with INV Digital Dimming

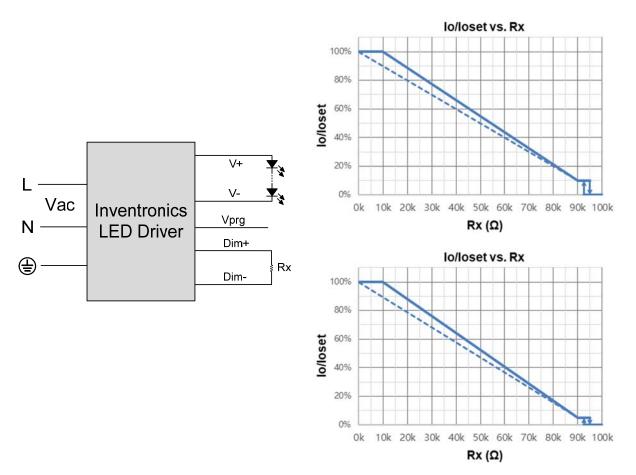
Implementation 4: Negative logic


Notes:


- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

• Resistor Dimming

SUM-760SxxxMGR


The recommended implementation of the dimming control is provided below.

SUM-760SxxxMGR

Rev.A

Implementation 6: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

• Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting-Percentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference <15 min) / (programmed on-time from the dimming curve).
- **Traditional Timer**: Follows the programmed timing curve after power on with no changes.

• Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

• Minimum Dimming Level with 5% or 10% Selectable

The minimum dimming level can be set as 5% or 10% by Inventronics Multi Programmer, 10% is default.

SUM-760SxxxMGR

Rev.A

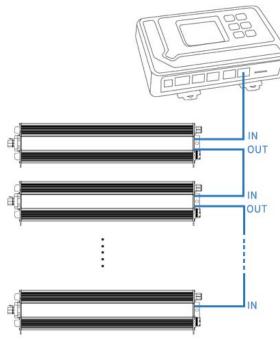
Maximum Dimming Level with 9V or 10V Selectable

The maximum dimming level can be set as corresponding dimming voltage is 9V or 10V by Inventronics Multi Programmer,9V is default.

• Fade Time Adjustable

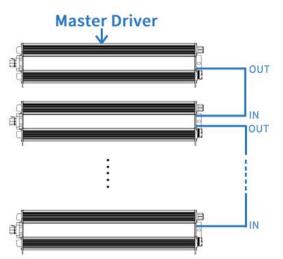
Soft-start time and dimming slope can be adjusted by Inventronics Multi Programmer to get customized fade time experience, disable mode is default.

• End Of Life


End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

Digital Dimming

Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to <u>Inventronics Digital Dimming</u> file for details


Daisy Chain Application

Daisy chain system can support synchronous dimming of up to 100 drivers due to unique dimming interface design, please pay attention to right sequence of 'IN' and 'OUT' port for RJ12 connection.

Daisy chain controlled by External Controller

Inventronics supports daisy chain connection for drivers that is dimmed by external controller. All drivers' rotary switch need to be tuned to 'EXT'.

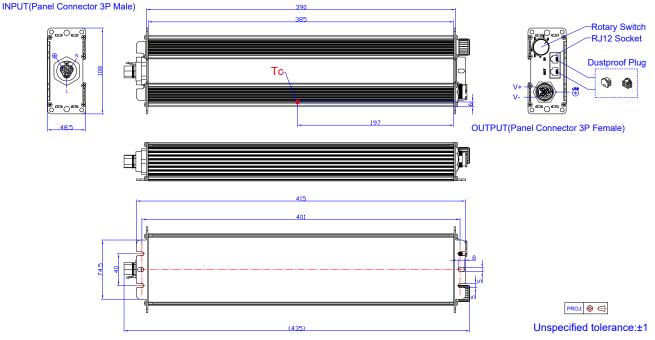
Daisy chain controlled by Driver-self

Inventronics offers the solution to use driver itself to control daisy chain dimming without the controller. The rotary switch of the master driver is tuned to required dimming level when the rest of drivers are tuned to 'EXT'.

Rev.A

760W Programmable Driver with INV Digital Dimming

Programming Connection Diagram



Note: The driver does not need to be powered on during the programming process.

• Please refer to <u>PRG-MUL2</u> (Programmer) datasheet for details.

Mechanical Outline

SUM-760SxxxMGR

Note: This driver features UL Wet Location, IP66 panel mount connectors to streamline wiring in the field while still supporting stringent environmental conditions. The mating push-lock are not supplied by Inventronics. Please contact Wieland and Amphenol LTW or one of their suppliers for assistance sourcing the mating push-lock.

Location	Series	Rating voltage/current	PN of connector on driver	PN of mating push-lock
Vin	Wieland RST20i3	600V/10A	96.032.1055.7	96.031.0055.7 (Spring) or 96.031.4055.7 (Screw)
Vo	ALTW X-Lok,C-Size	300V/20A	ABAB-CAQ03000100	CC-03BFMB-QL8APP

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

SUM-760SxxxMGR Rev.A 760W Programmable Driver with INV Digital Dimming

Revision History

Revision History							
Change Date	Rev.	Description of Change					
		Item	From	То			
2023-02-10	А	Datasheet Release	/	/			

16/16